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ABSTRACT

A new approach to GMTI data exploitation for large area persistent surveillance is presented.

Instead of traditional target tracking, this approach utilizes GMTI data as moving spots on the ground to
estimate the level of'activities and detect unusual activities such as military deployments.

A multilayer hierarchical exploitation scheme is proposed. This computational framework has clean
interfaces between layers consisting of multiple processing modules. Various data processing, machine
learning, and reasoning algorithms can be implemented in these modules. This system is easily extendable
and can be tested using a generalized test bed.

The development of two processing modules, vehicular volume and convoy detector, is described.
For the vehicular volume module, US highway data were used as a surrogate of long-term GMTI
surveillance data. The relationship between the activity level of Norfolk Naval Base and the traffic pattern
on a road leading to the Base is studied. The convoy detection module, developed using real GMTI data,
contains an algorithnm that detects convoys without explicit target tracking.

An end-to-end testing facility was also developed. Using this test bed, the system can be tested at
diflerent levels: as an individual processing module, as multiple cooperating processing modules across
layers, or as the entire system.
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1. INTRODUCTION

The Space-Based Radar (SBR) system aims to provide persistent surveillance at a global scale. The
two principal operational modes of the system are the Synthetic Aperture Radar (SAR) and the Ground
Moving Target Indicator (GMTI). While SAR provides information on nonmoving ground scatterers,
GMTI data conlains information on moving targets. Due to the large flow of data that will be generated
by the SBR sensors, the automatic exploitation of the sensor data is a key component of the SBR system.

This report presents work in progress in the area of SBR GMTI data exploitation. Since tracking at
a global scale is prohibitively expensive for SBR GMTI sensors, we explore methods that can extract
beneficial inlformation froio the uncorrelated GMTI data. One approach is to model the behavior of the
GMI I "spots" under normal circumstances to detect unusual activities such as military deployments. By
this approach, we view the SBR GMTI exploitation as a pattern recognition, machine learning, and data

mining problem.

We propose here a multilayer hierarchical exploitation scheme that has clean interfaces between
layers and can be easily extended. Each layer contains multiple processing modules, and all of the
modules in thc system have a similar functional structure in terms of data analysis, pattern modeling, and
anomaly detection. This system can be viewed as a computational framework forti" multisensor persistent

surveillance.

This report describes the development of two processing modules for the proposed system:
vehicular volume and convoy detector. Within the framework of activity level anomaly detection, both

modules generate low-level computational features. Since GMTI surveillance data over a prolonged

period of time is not readily available, traffic data collected in Virginia Hampton Roads area are used as a
surrogate data source for the development of the vehicular volume feature. The relationship between the
activity level of Norfolk Naval Base and the traffic pattern on a road leading to the Base is studied in
detail. Convoys are important indicators of military movements. To capture this information, an algorithnm
for detecting convoys in GMTI data without explicit target tracking is also developed.

An end-to-end testing facility has also been developed in this work. The proposed computational
framework has the ability to incorporate many processing modules that are specialized in exploiting
different aspects of sensor data. These modules can be implemented using a variety of data processing
and pattern analysis techniques. When building such a system, a test environment for testing and
evaluating the processing modules is highly desirable. This flexible test bed is developed to facilitate the
system development at various levels, should it be an individual module or a set of cooperating modules.

In the following section, the proposed framework for multisensor persistent surveillance is
presented. In Section 3, the Norfolk traffic study is used as an example to explain the inner working of the
framework. Section 4 explains the convoy detection algorithm. The test bed for system testing and
evaluation is presented in Section 5.



2. A FRAMEWORK FOR MULTISENSOR PERSISTENT SURVEILLANCE

The data processing and reasoning scheme developed in this work for activity change detection can

be considered generally as a fr-amework for multisensor large-area persistent surveillance. This
framework has a multilevel bottom-up hierarchy, where the sensor data are at the lowest level. The entire

system consists of highly modular components that can be extended easily to accommodate new sensor
inputs and new processing and reasoning schemes.

lo help explain this system design, we first take a look at how human analysts would conduct a

situational analysis on an example surveillance scenario. The setting of the scenario is the Taiwan Strait.
The question to address is whether or not Mainland China is preparing an imminent attack on Taiwan- To
answer this question from a surveillance point of view, we consider how the military activity level in that
area would change if the preparation for the attack is in motion.

Figure I shows a possible military preparation timeline starting firom six months prior to the final
attack. Potential changes in site activities are listed by military branches. We are particularly interested In
the changes that occur three to six months ahead of the attack. Around that timefriame, some early site-
level activity changes may be present. For instance, increased ship and pier retrofit activities at navy
shipyards and ports: increased activity level at army garrisons, live-fire ground weapon ranges, and
marshaling yards: as well as increased activities at Air Force main operating bases (MOBs) and live-fire
air weapon ranges.

let us use the Army marshaling yards as an example to continue the analysis. To decide if the
activity level in a marshaling yard is unusual, the vehicular volume, number of train cars, train speed,
number of convoys, etc., can be monitored. Since the information on these items can be obtained readily
fromn the sensor data, they are regarded as low-level observables. These observables form the foundation
of our analysis.

Figure 2 structures the analysis of the Taiwan scenario into a mnultilevel situational analysis
flowchart. l'o answer the ultimate question at the top level, we monitor the activities at various mid-level
sites. To determine the level of activity at a particular site, we keep tracking relevant low-level
observables. In essence, this flowchart is built from the top down by a knowledge-driven analysis process.
The result is a multilevel hierarchical system. Using this system to determine if China is preparing an
attack on Taiwan, the analysts would first gather information from the low-level observables to reach
conclisions at particular sites and then use the results from various sites to assess the situation of the
entire region.
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As mentioned previously, sensor data can provide information on low-level observables. To build a
computational system that uses sensor data as inputs, we reverse the analysis process in Figure 2. The
result is a data-driven bottom-up hierarchy, shown in Figure 3. At the entry level, features are extracted
from sensor data to support the low-level inference. The results are then sent to the next level uip to
ascertain the state of site activities. Finally, the results from all relevant sites are used to reach a regional
conclusion.

Database
Human

Interaction

Higher levels 
Rgo

- Rule-based reasoning

Machine learning

- Situational inference

Shipyard Marshaling yards

Feature level

- Feature extraction Number of Number of Train
- Statistical testing Convoys Train Cars Speed

- Model update

F'/,.Ifli'c 3. C'o )1/litiUioi•i f/.i'i •t i• A/ foi)' peirisiil l .slu iilla//dncC E.sin-i m lt/i.dt is .iso dhau , i//u.s•,ratd U.\ lg Tuo un

The basic elements ot this comnputational system are its processing modules. At the core of these
modules are statistical models and learning schemes that are used to evaluate incoming data for their
normalcy. Different algorithms can be implemented in the modules. A simple module, typically a low-
level one, can contain a straightforward statistical model such as the Gaussian model. A more
sophisticated module can be a rule-based expert system, a pattern recognition algorithm, a machine-
learning scheme, or a hybrid system.

Although the computational models implemented in the processing modules may take many
different forms, the design of the modules can share a common functional structure. Illustrated in Figure
4, a module f'irst extracts appropriate computational features from the input data. Whenever necessary, the
features are refined. The feature values are used to build or update the computational model in the
module. Finally, the feature values are evaluated against the existing model to determine whether they are
normal or not. The common structure of the modules facilitates system testing and extension.
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This multilevel hierarchical computational framework emphasizes evidence accumulation and
continuous learning. Valuable information, including model parameters, intermediate results, and

previous conclusions and observations, are stored in the database. At every level of reasoning, human
expertise and intervention are an integrated part of the system. It can be easily extended to accept new
inputs, generate new features, monitor additional sites, and ultimately provide more surveillance
coverage.

In the next two sections, we use highway traffic volume and convoy detection as examples to
explain how entry-level feature modules can be built and used to provide information for higher-level
inference.
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3. NORFOLK TRAFFIC STUDY

To study the activity patterns in a region, we need a data set that spans over a long period of time.
Since a suitable GMVIT1 data set is not available to us, we used US highway traffic data as a surrogate. The
goal is to explore how certain attributes of the traffic data can be used to monitor the activity level in a
geographic area. In this section, the construction of a processing module designed to utilize the vehicular
volume as a low-level feature is explained step by step.

3.1 NORFOLK TRAFFIC DATA

Data used in this study were downloaded from the Archived Data Management System for Virginia
(ADMS Virginia). This traffic database is sponsored by the Federal Highway Administration and Virginia
Department of Transportation. It is currently managed by the Smail Travel Lab of the University of
Virginia. Traftic data are collected using embedded magnetic loop sensors located throughout the
Virginia Hampton Roads area, shown in the left-hand image of Figure 5. Vehicular speed, volumne, and
occupancy data are collected every 20 seconds and then aggregated and recorded every minute. Due to
high failure rates of the sensors, data screening is essential.

/_ ___ 1.

Figure 5. Hanipton Roads area. 1-564 leads to Nor/blk Naval Base.
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In addition to the traffic data, ground truth of regional activity level is necessary for algorithm
development and testing. The truth data, however, is not available in the ADMS Virginia database. This
issue was resolved by inferring the truth from the ship anrival and departure activities at Norfolk Naval

Base. The right-hand image of Figure 5 shows the road details of the Norfolk area. The major highway
that leads to the Naval Base is Route 1-564. As expected, major Base activities tend to have a significant

impact on the traffic pattern of the nearby highways, including 1-564.

In this study, the regular weekday traffic is considered as the "normal" activity, and the traffic

during the ship arrival and departure days are regarded as "'anomalies." Initially, data collected at Station
131 on 1-564 westbound (WB) was used as the main data source. The vehicular volume at this station was
studied extensively and Uised as a feature-level indicator to Base activities. Later, data collected at 1-564
eastbound (EB) Station 135 are processed to study traffic patterns across months, seasons, and years.

At the beginning of the study, the truth data was obtained from the newspaper webpage
http://www.hamptonroads.com/military/liomecomings. (This truth data was later confirmed by a ship
arrival and departure list obtained from the Norfolk Naval Base.) The available truth data limited the time

span of the traffic data used in the study to about three months. We screened the weekday vehicular
volume and speed data collected between April 7 and July 3, 2003 at Station 131 and found 41 days of
usable data. Among the 41 days, ten are considered abnormal. This 41 -day data set constitutes the initial
Norfolk traffic data set.

3.2 PROCESSING MODULE FLOWCHART

The computational flowchart for the traffic volume analysis module is shown in Figure 6, where the
"Feature Refinement" step is specified as a gating function. Each step of the processing is explained in
detail in the following subsections.

Database
Human _________

Interaction w(t) _r'Lr

Traffic Data -
Results To

E, Upper Level

Feature
Refinement

Figure 6. TTIrafic /ata Iroce.ssing mnod/h.//locharil.

3.3 FEATURE EXTRACTION

The typical first step of a module is to preprocess the incoming data and extract features that are

relevant to the subsequent processing. For Norfolk traffic data analysis, the data screening mentioned
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previously can be considered as preprocessing. The screened per-minute data typically contain some high
frequency fluctuations that can be regarded as noise. To reduce the fluctuation, we filtered data at every
Five-minute mark using a moving average window that averages the data over the past ten minutes. For
each 24-hour period starting at 00:10 hour, this process results in 287 data points, which are used as
computational features in the subsequent processing.

(an the vehicular volume and speed features indicate the level of Base activities? To answer the

question, the means and standard deviations of these features are first computed at each five-minute mark
over the 31 normal and 10 abnormal days, respectively. The results are shown in Figures 7 and 8. The
solid lines in the figures represent the mean values, and the boundaries of the shaded areas correspond to
the standard deviations. Since 1-564 WB is inbound to Norfolk Naval Base, the traffic volume peaks in
the morning as expected.

To be able to distinguish the abnormal traffic pattern from the normal ones, we would like to see
good separations between the normal and abnormal curves in the two figures. Taking into account the
variances of the data, the best separation appears to be in the vehicular volume, during the mornin[g
period. [his tellIs us that, to use vehicular volume and speed as computational features for anomnaly
detection, we need to refine the features to specify the time intervals in a day when the features are the
most discriminative. This refinement is represented by the gating function w(t) in Figure 6.
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3.4 FEATURE REFINEMENT

For the vehicular volLume and speed data, the separations between the normal and the abnormal data

sets are quantified by using the Student's /-test. The Student's i-test determines whether two sets of
samples are drawn from the same statistical distribution. Therefore, it is a test between the two
hypotheses: H0 : two sample sets are from the same distribution- and Hl: two sample sets are from
different distributions. The sample sets used in our tests are populated by the vehicular volume or speed

data from the "normal" and the "abnormal" days. Figures 9 and 10 show the results of the Student's t-

tests. The "significance" values in the figures are the probabilities that the two sample sets are from the
same distribution. The tests were conducted at level 0.05, which means that a 5% threshold for the
significance values was used to choose between the two hypotheses. In the two figures, H0 and H, are
marked in red with value 0 and I, respectively.

The Student's t-test results show that the normal day and the abnormal day vehicular volume data

have the best separations in the early part of a day, between 0830 and 1230 hours. In Figure I1, this time
interval is superimposed onto the vehicular volume mean and standard deviation data shown in Figure 7.

The Student's t-tests also show that the speed data do not have consistent separations. Therefore, this
particular vehicular speed data set is not a strong indicator for the Norfolk Naval Base activities. In the
following analysis, we will focus on only the volume data.

10
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3.5 FEATURE MODELING

Computational models are at the core of all processing modules. These models capture the behavior
of the input features under normal circumstances. During operation, the incoming feature values are
evaluated against the models to detect an anomaly.

For the vehicular volume feature, we assumed Gaussian models for data points collected at the
same Five-minute mark across all "normal" days. This assumption is illustrated in Figure 12. One way to
verify the Gaussian assumption is to visually examine the histograms of the nonrnal day vehicular volume

data. Based on the results of the feature refinement, we narrowed our focus to the time interval between
0900 and 1100 hours for modeling. Histograms of vehicular volume are generated at every five-minuite
mark for the two-hour period. lhe results are plotted in the four pictures of Figure 13. Each picture
contains six separate curves. These histograms indicate that Gaussian distribution is an appropriate
assumption for the volume data. The Gaussian model parameters are estimated from the data as the

statistical sample means and standard deviations.
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3.6 FEATURE EVALUATION

The last processing step in a module is to evaluate the incoming feature values against the models
established for the "'normal" activity patterns. The results help to deterrmine if an anomalous Situation is

present.

For the vehicular volume feature, the evaluation is conducted at every five-minute mark between
0900 and 1100 hours. The models for the volumne data are one-dirrensional Gaussianis and the anomalies

are expected to increase the traffic volum1-e. Therefore, a single-valued decision boundary is used to decide

if a Volume data value is within the "'normal" range. At each five-i-inute mark, all 41 available data

values (31 from normal days and 10 from abnormal days) are used in testing. The probabilities of

detection (PD) and false alarm (P,,) are Calculated by comparing the test outcome against the truth data.

By varying the value of the decision boundary, a set of PD's and PF pairs are generated and then plotted as

Receiver Operating Characteristics (ROC) curves. In this work, the probabilities are first calculated by

aggregating the test results in four 30-irminue intervals. The resulting ROC curves are shown in Figure 14.

Then the restults from the entire two-hour tirne interval are aggregated to generate the ROC curve in

Figure 15.
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Note that, in this experiment, the same set of "normal" day data was used for both model generation
and testing. A more sophisticated test method, such as "leave-one-otit," can be used instead. Nevertheless,
since the statistical distribution of the normal day data is close to Gaussian, a significant difference in the
test results due to the Gaussian assumption is unlikely.

An effective and efficient system should operate at locations close to the tipper left comer of the
ROC plot, i.e., operating with high probability of detection and low probability of false alarm. As shown
by the red lines in Figure 15, the performance of the vehicular volume feature is rather poor: to detect

90% of all anomalies, 9 out of 20 detections would be false. In the next subsection, this performance isstie
is examined in detail.

3.7 IMPACT OF SHIP SIZES

In the process of identifying the main contributors to system performance, we noticed that some of
the days had large ships departing or arriving while the others had much smaller ones. Table I contains
the list of anomalous days provided by the Norfolk Naval Base and the potential numbers of personnel

onboard the ships. Presumably, large ships would have more substantial impact on the traffic pattern near
the Base than the small ships would.

16



TABLE 1
Truth Data For Small and Large Ship Arrival and Departure:

Six Small Ship Days and Eight Large Ship Days

Date Ship Type and Name A/D Crew Troops

06/11/03 Destroyer Arleigh Burke Arrival 337

06/13/03 Command - Mount Whitney Arrival 970

Un 06/25/03 Amphibious Assault Ship Bataan Arrival 1,082
C-
Z Amphibious Transport Dock Ponce Arrival 364

Dock Landing Ship Ashland Arrival 320

M Dock Landing Ship Gunston Hall Arrival 320
E

U) 06/26/03 Amphibious Assault Ship Saipan Arrival 1,067

06/27/03 Amphibious Assault Ship Saipan Arrival 930

07/03/03 Crouser Anzio Arrival 387

Destroyer Porter Arrival 387

09/22/99 Aircraft Carrier USS Roosevelt Arrival 6,122 3,061
. 02/18/00 Aircraft Carrier USS Dwight Eisenhower Departure 6,130 3,065

CL
.! 05/22/00 Aircraft Carrier USS Harry Truman Departure 6,122 3,061
U)
S06/21/00 Aircraft Carrier USS George Washington Departure 6,122 3,061

S12/20/02 Aircraft Carrier USS George Washington Arrival 6,122 3,061

-j 05/23/02 Aircraft Carrier USS Harry Truman Arrival 6,122 3,061

05/29/03 Aircraft Carrier USS Roosevelt Arrival 6,122 3,061

05130/03 Aircraft Carrier USS Roosevelt Arrival 6,122 3,061

IFigure 16 shows the means and standard deviations of traffic volume at 1100 hours during nomrnal,

small ship, and large ship days. The overlaps between the normal and the small ship days and between the

small and the large ship days are significant. Figure 17 displays the mean of traffic volume in normal days

as well as the one-standard-deviation boundaries of the traffic volume in the small and the large ship days.

Clearly, the increases of the traffic volume in the small and the large ship days are quite different.
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To quantify the difference and its effect on system performance, we conducted Student's t-tests,
reevaluated the vehicular volume feature, and generated the corresponding ROC plots. The results are
shown in Figures 18 through 21.

Figures 18 and 19 show the Student's /-test result and the ROC curve generated using the vehicular
volume data from the normal and the small ship days. In this case, the system performance is similar to
that in the small and large ship mixed case displayed in Figure 15. In the case of using the normal and the
large ship days, shown in Figures 20 and 2 1, significant improvements are seen for both the shape of the
ROC curve and the length of the time interval when the vehicular volume feature remains effective.

By the results shown above, the vehicular volume feature appears to be more effective for detecting
the large ship days than the small ship days. This, however, does not mean that the vehicular volume
feature is unusable for detecting the small ship days. In fact, an important strength of the proposed
computational framework is its potential capability to utilize information provided by Multiple imperfect
features to produce high quality inference results.
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3.8 ANALYSIS OF 1-564 EB VEHICULAR VOLUME DATA

The vehicular volume data used in the analysis thus far are solely from one collection station on I-
564 in the westbound direction. To investigate the consistency of the vehicular volume feature in terms of
its correlation to the naval base activity level, data collected at 1-564 eastbound Station 135 are also
analyzed in this study. This data set consists of 3 1 normal days and 3 abnormal days. The reduction on the
number of abnormal days from the original ten is due to the poor quality of the Station 135 data on the
days removed. The analysis procedure used to process the data is the same as the one presented earlier in
this section.

The mean vehicular volume of the normal and the abnormal days are plotted in Figure 22. Since

1-564 EB is outbound from the naval base, the traffic volume peaks during the afternoon instead of in the
morning as the westbound traffic does. Figure 23 shows the system performance ROC curve using results
aggregated between 1330 and 1500 hours. This ROC curve is similar to the one shown in Figure 15.
Therefore, although the traffic pattern throughout a day is quite different between the eastbound and the
westbound data, the vehicular volume feature is consistent in its ability to indicate the activity level at the
naval base.

The corresponding vehicular speed data from Station 135 contain mostly failed sensor readings that
are not suitable for analysis.
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Notice that the peak traffic volume in either direction of 1-564 does not present a dramatic change

during the ship arrival and departure days. Also, the traffic volume peaks around the same time as the
regular rush hours. This is because the release of the military personal from the ships is typically
scheduled in the mornings. Since the access road to the Base is gated, it is typically saturated during the
peak traffic hours.

3.9 MODEL UPDATE

In Sections 3.5 and 3.6, we discussed how to build a computational model for the vehicular volume
feature and how to use the model to evaluate incoming feature values for anomaly detection. Two
questions remain: I ) how many different models should a system maintain for this feature; and 2) how
trequently should the models be updated? One answer to the first question is that the traffic patterns for
weekdays, weekends, and holidays are quite different, and hence separate models are required. A study is

now being conducted to answer this question more systematically. In this subsection, we present the
analysis results that address the second question.

The data set used in the "'model update" analysis consists of weekday vehicular volume data
collected from 1-564 eastbound Station 135 in years 1999, 2000, 2001, and 2003. (Data from 2002 is

incomplete in the ADMS Database.) Known "abnormal" days are excluded. The same screening and
smoothing procedures as described in Section 3.3 are used to preprocess the data. For each 24-hour

period, this process generates 287 traffic volume values at five-minute marks starting at 00:10 hours.

A series of Student's /-tests are performed to measure the similarity between two monthly vehicular
volume data sets. At each five-minute mark, a /-test is conducted at 5% significance level. The two test
sample sets are compiled respectively from the two monthly data sets. Each sample set contains all the
vehicular volume data corresponding to the current five-mninute mark. The degree of similarity between
the two months is measured as the percentage of the 287 t-test results that fail to reject the null hypothesis

H11. In other words, this similarity measure is the percentage of the 24-hour period when the vehicular
volume data from the two samples are statistically similar.

Figure 24 shows the similarity of the vehicular volume pattern between the same months of two
adjacent years. Figure 25 shows the similarity between all pairs of adjacent months. By these two figures,
it appears that the year-to-year changes in vehicular volume pattern are slightly larger than the month-to-
month changes.

To better understand how the monthly vehicular volume pattern changes over the years, Student's I-

tests, similar to the ones described above, are performed on pairs of months separated from one to thirty-
six months. The degree of similarity is again measured by the percentage of time in a day when the t-tests
fail to reject the null hypothesis. The results are averaged for each separation interval and then plotted in
Figure 26. Apparently, for any particular month, the two most recent months have the most similar traffic

volume patterns, followed by the 12l' and the 13 h months. The similarity also peaks, although less
significantly, at the 24' month. The cyclic pattern in the figure reflects seasonal changes in the vehicular
volume data.
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The comparison of the monthly vehicular volume data is also conducted using a dissimilarity
measure. The dissimilarity of the vehicular volume between two months is computed as

.\. (2,.-),

N I (,o + a' '

where X, and v, are the monthly means at the ph Five-minute mark, u, and a, are the corresponding

variances, and N 287 is the number of Five-minute marks in a 24-hour period. When the vehicular
volume at each five-minute mark is Gaussian distributed, the difference measure D has a chi-,squiru
distribution. The results of (I-D) shifted by a constant is averaged for each separation interval and plotted
in Figure 27. The scale of the ordinate in the plot is arbitrary.
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The results in Figures 26 and 27 correspond quite well. Therefore, for the Norfolk traffic data, it is
appropriate to update the models for the vehicular volume feature once every other month using the past
data. The models for the same month in the past year can also be used as a strong reference.
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4. CONVOY DETECTION USING GMTI DATA

In the last section, the functional components of a processing module are explained in detail using
the development of the highway vehicular volume feature as an example. As illustrated in Figure 3, the
vehicular volume feature is one of the low-level modules in the system. Other modules can be built
similarly with the same functional structure shown in Figure 4. For instance, one of the features depicted

in Figure 3 is the "Number of Convoys." Before being counted, however, the convoys need to be
distinguished from the rest of the traffic mix. The goal of this section is to construct a module that detects
convoys in GM]' I data.

This convoy detection algorithm involves first finding groups of detections that are likely to be
convoys, then correlating those groups over time, from one GMTI scan to the next. In this manner, the
evidence of convoys Is accumulated to dismiss false convoys and ultimately to identify the persistent true
convoys by applying a threshold to the evidence.

Typically, a GMTI data set consists of information on targets detected in a series of scans over a

geographic area. Among other quantities, the data set contains the target position, speed, and the
corresponding data quality measures. The scans in a data set, however, may not have been taken close
enough in time so that individual vehicles can be tracked easily from one scan to the next. Therefore, the
proposed convoy detection algorithm involves first finding groups of detections that are likely to be
convoys, then correlating those groups over time, from scan to scan. In this manner, the evidence of a
convoy is accumulated to identify the persistent true convoys and dismiss the inconsistent false ones.

T he flowchart oflthis convoy detection algorithm is shown in Figure 28. Convoy candidates are first
identified in each scan as qualified clusters of GMTI detections. Each candidate cluster is assigned a
persistence score, which is increased every time its predicted position in the next new scan has a close
match to the position of one of the convoy candidates found in the new scan. The predicted position of a
candidate in the next scan is calculated by establishing a motion model for each candidate. When its

persistence score is high enough, a candidate is declared a convoy.

Due to the classification of the GMT] data, graphical drawings are used instead of real data in the
following to explain the convoy detection algorithm.
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4.1 IDENTIFY CONVOY CANDIDATES IN A SCAN

The procedure for identifying convoy candidates in GMTI data is essentially a clustering scheme.
There are three steps in the process, which are depicted in Figure 29.

The first picture in Figure 29 shows the road segments and the GMTI detections in a fictitious scan.
Since isolated detections are unlikely to be part of a convoy, the first step of the processing is to remove
them. The result is shown in the second picture. In the next step, clusters are found using a k-means based

clustering algorithm. Six such clusters are displayed in the third picture of Figure 29 in different colors.
These clusters then undergo several iterations of combining and subdividing so that the resulting clusters
are not too close to each other and the members in each cluster are not too far apart. This refinement is
necessary since close-by clusters could be a convoy that is split into parts by the clustering algorithm, and

far-apart members in a cluster could be unrelated detections. To ensure that a convoy candidate cluster
contains multiple detections and has an oblong shape, the number of detections in the cluster, the
consistency of the speed value and heading of the detections, and the positions of the detections relative to
each other are also examined. The final result of this process is illustrated in the fourth picture.

Once the convoy candidates are identified, each one of themn is assigned a persistence score of value
0. In the following, the group motion of each candidate cluster is characterized and used to increase the
candidate's persistence score by correlating the candidate with the ones found in subsequent scans.
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4.2 MOTION MODEL

To predict the positions of the candidate clusters in the next GMTI scan, a motion model is

generated for each cluster. This process is illustrated in Figure 30.

A convoy candidate cluster contains detections that are closely aligned and have similar speed and

heading. In GMTI data, the reported speed for a detected target is the sensor reading of the actual speed

along the radar range direction. To predict the position of the cluster in the next scan, the detected cluster

speed at the range direction, Vy, needs to be projected back to the direction of the actual cluster heading.

Denote this projected speed as V. When the quality of the detected speed values in the cluster is

reasonably good, VR is estimated as the median speed of the detections. Otherwise, it is estimated as the

average of the detected speed values in the cluster.
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Figure 30. Convoi motion miodel. The alpparent clu.ter s.Veed kR (/on07, the rmdar range direction is back-projected

to the estimaeted cluster heading direction (blue line) to estimate the, cluster speed I/

The actual headings of the GMTI detections are unknown. In this work, the heading of a convoy
candidate cluster is estimated by fitting a line to the detections in the cluster using least square regression.
The apparent cluster speed VR along the radar range direction is then back-projected to the fitted line to
estimate the actual cluster speed V.

4.3 CONVOY CANDIDATE CORRELATION BETWEEN TWO GMTI SCANS

Once the speed and the heading of convoy candidate clusters in a GMTI scan are estimated, the
positions of the clusters in the next scan can be predicted by using these estimates and the elapsed time
between the two scans. After a new set of convoy candidates are found in the new scan, the "predicted
positions" of the existing candidates are correlated to the "new positions" of the new candidate by
calculating their Euclidean distances. This process is shown in Figure 31. The candidate cluster from the
new scan is shown in the figure in brilliant colors, and the one carried over from the previous scan is in
faded colors.

A strong correlation, i.e., a small Euclidean distance, between a new and an old candidate is
considered evidence that the candidates are associated with the same actual convoy. The persistence score
of the corresponding candidates increases when such evidence exists.
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4.4 EVIDENCE EVALUATION

Aflter the candidate cluster correlation, the persistence score of all the candidates is evaluated
against a threshold that is determined heuristically. Candidates with scores higher than the threshold are
declared convoys and become the output of the Convoy Detection Module. For the rest of the candidates,
their score history is examined. A candidate is dismissed if its persistence score has not increased in a
certain number of scans in the past. The module then moves on to the next GM-I-1 scan.

The convoy detection algorithm presented in this section has been tested on operational GMTI data
with successful results. Due to the classification of the data, the testing details will not be discussed in this
report. By presenting the convoy detection algorithm, however, we provide an example of building a
processing module that generates a feature with a very different nature from the vehicular volume feature
presented in Section 3.
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5. A TEST BED FOR EVALUATING DETECTION AND REASONING
ALGORITHMS

In this section, we present a test bed for testing and evaluating the processing modules. As
mentioned previously, a variety of statistical modeling, pattern recognition, machine learning, and data
mining algorithms can be implemented in the processing modules. During development, various levels of
testing are necessary for algorithm modification, parameter adjustment, and performance evaluation.
Since the processing modules in this work share a common functional structure, we are able to build a

generalized testing system that allows easy change of input, output, and algorithm plug-ins. It also
provides access to internal parameter values, which is crucial for testing sophisticated algorithms.

The purpose of this section is to describe the structure of the test bed and to show its capability in
performing testing of processing modules. The Vehicular Volume and the Convoy Detection modules
developed in Sections 3 and 4 both contain one low-level feature. The system tested in this section is
more sophisticated: it uses real-timne simulated traffic as input, calculates two sets of low-level features,
and then uses these features to learn about the normal traffic pattern at a road intersection by applying a
machine learning algorithm. When an unusual traffic pattern emerges, the system flags the operator to
report Ihe anomaly in real time.

Figure 32 shows the top-level diagram of the system. Three vehicle sources release vehicles onto a
forked section of two-lane roads. Using data collected by the "tripwire" and the "bounding box" sensors,
the system computes features for the "detector" to detect anomalies. The detector first learns about the
normal traffic patterns from a set of training data. It then examines the incoming data values in real time
to detect abnormal patterns. Through a graphical user interface, a human user can manipulate the
parameter settings of the vehicle sources, dictate the learning process, and monitor the input, the output,
and the internal parameters ot the detector.

It should be emphasized that this test bed is designed to be flexible to accommodate a variety of
configLurations of multilevel hierarchical modules. In our example system, computational f'eatures are
extracted by the tripwire and the bounding box modules for anomaly detection. When necessary, these

f(eatures can be replaced or more features can be added. In Figure 32, a "convoy detector" is shown as an
example of additional features. To test the system under different input conditions, modules can also be
included to transform the source vehicle information. For instance, in the case of SBR, the vehicle source
can be transformed into GMTI detections.

The following subsections describe the components of the test bed.
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5.1 VEHICLE SOURCES

The speeds of the vehicles released by the vehicle sources have Gaussian distributions. The time
intervals between two vehicles released at the same source obey Poisson distributions. Faster vehicles can
pass the slower ones. Vehicles approaching the intersection choose a direction randomly to proceed, and
the choices are uniformly distributed.

5.2 SENSORS

"Tripwire" sensors provide the vehicle heading and volume, as well as the minimum, maximum,

and average speed of the vehicles that pass through the tripwire. A "'bounding box" encloses an area with
traffic activities. It counts the number of vehicles inside the area as well as the ones that cross the borders.
Bounding boxes also provide the overall heading and the minimum, maximum, and average speed of the
vehicles that are counted. All data are collected every 30 seconds. T-he different types of data values

generated by the sensors are aggregated into vector form and used subsequently as input feature vectors to
the detector. The flavor of these feature vectors is consistent with what can be computed from the GMTI
data.
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5.3 DETECTOR

Data provided by the tripwires and the bounding boxes are used as input to the "detector." The core
of the detector is a neural network-based classifier called simplified fuzzy ARTMAP (SFAM). Figure 33
illustrates the structure and the learning scheme of SFAM. The neural network learns about the "normal"
and the "abnormal" traffic patterns from a set of training data, which are the feature vectors generated by
the sensors. In Figure 33, these training vectors are depicted as the green ("normal") and the red

("abnormal") points in the multidimensional feature space. When the features are chosen properly, points
with the same color tend to form clusters. The SFAM identifies the clusters and builds hypercubes around

them. Each hypercube is associated with either the "normal" or the "abnormal" output class. Given a new
feature vector, the classifier evaluates the proximity of the vector to the hypercubes and assigns it to the
class that the closest cube belongs to.
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Input-to-Category /
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0 00
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Input Feature Vectors
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5.4 USER INTERFACE

A graphical user interface, shown in Figure 34, allows a user to change the settings of the vehicle
sources and control the learning process. Through the interface, the user can also observe the traffic flow,
monitor the system output, and examine the internal parameter values such as the feature vectors and the
weights of the neural network.
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5.5 SOFTWARE ARCHITECTURE

The software design of the test bed is shown in Figoure 35. It has a "'publIish-subscri be" software
architecture. A centralized comIImuication manager Suipports broadcast comm unications.

Since data transfer amrong diffecrent parts of the system is mediated by the communication manager,
it is easy to swap components in and out Of' the system. For instance, if a "~convoy detector" needs to be
added as a new feature or some new detectors become available, they can be easily plugged into the
systemn. These new additions are Illustrated In red in Figure 35.
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6. SUMMARY

Traditional target tracking may not be the best method to exploit GMTI data for large area
persistent surveillance. In this work, we consider the approach that uses the GMTI data as moving spots
on the ground to estimate the level of activities in an area.

A computational framework is proposed for data processing and inference. This framework has a
bottom-up, hierarchical, and modular structure where sensor data provide input to the system at the
bottom level. The system design emphasizes on evidence accumulation and continuous learning. Various
pattern recognition, machine learning, and data mining algorithms can be implemented in the processing
modules of the system. The modules at different levels share a common functional structure: after
preprocessing, computational features are extracted for model building and reasoning; the resullts are then
passed to the modules at the next level uIp. This computational design ensures that the system is easily
extendable and can be tested using a generalized test bed.

Traffic data from the ADMS Virginia database were used as a surrogate of GMTI data. We explain
in detail how low-level features are constructed from the traffic data and used as indicators to the activity
level at Norfolk Naval Base. A convoy detection algorithm for exploiting GMT[ data is also described.

A test bed was built for evaluating detection and reasoning algorithms. It allows easy change of
input, output, and algorithm plug-ins as well as access to internal parameters.
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